Received 12 November 2006

Accepted 14 November 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Hong Chang

Department of Chemistry , Luoyang Teacher's College, Luoyang 471022, People's Republic of China

Correspondence e-mail: xinhong_chang2006@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.035 wR factor = 0.106 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(E)-2,4,5-Trimethoxybenzaldehyde oxime

The title compound, $C_{10}H_{13}NO_4$, which exists as the *E* isomer, crystallizes with two independent molecules in the asymmetric unit. The bond lengths and angles in both molecules are normal. The crystal structure is stabilized by intermolecular $O-H\cdots O$ hydrogen bonds, which link the molecules into cyclic tetramers.

Comment

Substituted benzaldehyde oxime is an important intermediate in organic synthesis (Xu & Jin, 1999), existing in two isomeric forms, *viz.* Z and E (Sharghi & Sarvari, 2001). We report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal (Allen *et al.*, 1987) and in good agreement with those reported previously (Jerslev, 1983; Jensen, 1970). Atoms O1/O2/O4/C1–C9 lie in the same plane, the largest deviation being 0.040 (2) Å for atom C7, while in the second independent molecule, atoms C11–C20 and O6–O8 are essentially coplanar, the largest deviation from the mean plane being 0.046 (3) Å for atom C19. Intermolecular $O-H\cdots O$ hydrogen bonds (Table 2) link the molecules into nearly planar cyclic tetramers (Fig. 2).

© 2006 International Union of Crystallography All rights reserved The asymmetric unit of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

organic papers

Experimental

The title compound was synthesized by the reaction of 2,4,5trimethoxybenzaldehyde (0.01 mol) with hydroxylamine hydrochloride (0.01 mol) in the presence of sodium carbonate (0.01 mol) in a water-methanol solution (20 ml; 1:5 v/v) at room temperature (3.5 h). After dilution with water, the solution was extracted with dichloromethane, and the organic phase was evaporated to afford the title product in 92% isolated yield (1.94 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate-petroleum ether (1:1 v/v) solution at room temperature over a period of two weeks.

 $= 1081.04 (2) Å^3$

 $R_{\rm int} = 0.016$

 $\theta_{\rm max} = 25.0^\circ$

12599 measured reflections

3805 independent reflections

3079 reflections with $I > 2\sigma(I)$

Crystal data

$C_{10}H_{13}NO_4$	V = 1081.04 (2) Å ³		
$M_r = 211.21$	Z = 4		
Triclinic, $P\overline{1}$	$D_x = 1.298 \text{ Mg m}^{-3}$		
a = 7.44280 (10) Å	Mo $K\alpha$ radiation		
b = 10.71890 (10) Å	$\mu = 0.10 \text{ mm}^{-1}$		
c = 14.0290 (2) Å	T = 293 (2) K		
$\alpha = 87.5830 \ (10)^{\circ}$	Block, colorless		
$\beta = 88.4510 \ (10)^{\circ}$	$0.36 \times 0.30 \times 0.22 \text{ mm}$		
$\gamma = 75.2140 \ (10)^{\circ}$			

Data collection

Bruker SMART CCD area-detector diffractometer φ and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.965,\ T_{\rm max}=0.978$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0542P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.1378P]
$wR(F^2) = 0.106$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
3805 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
272 parameters	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXTL
	Extinction coefficient: 0.0058 (13)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O5 - H5A \cdots O1^{i} \\ O5 - H5A \cdots O4^{i} \end{array}$	0.82 0.82	2.14 2.29	2.8676 (15) 2.9832 (15)	148 142

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

H atoms were placed in calculated positions, with C-H = 0.93 or 0.96 Å and O-H = 0.82 Å, the hydroxy H atom being initially

Figure 2

Partial packing plot, showing the hydrogen-bonded (dashed lines) tetramer.

located in a difference Fourier map. They were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ for the aryl H atoms and $1.5U_{eq}(C,O)$ for the hydroxy and methyl H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Jensen, K. G. (1970). Acta Chem. Scand. 24, 3293-3330.

Jerslev, B. (1983). Acta Cryst. C39, 1447-1454.

Sharghi, H. & Sarvari, M. H. (2001). Synlett, 1, 99-101.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Xu, J. & Jin, S. (1999). Acta Cryst. C55, 1579-1581.